본문 바로가기
기초부터 대학원 수학까지, 추상대수학

25. 추상대수학 (f) 정규부분군간의 1-1 대응

by EnjoyingMath 2023. 8. 30.
반응형

다음 포스팅은 https://youtu.be/na0YYLJLWeQ 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다. 

 

20191025 Normal subgp - 2.

Recall that given sets $A, B, C \subseteq A, D \subseteq B$, 

$f: A \rightarrow B$ a fn.

Then 1) $f^{-1}(f(C)) \geq C$

          2)$f^{-1}(f(c))=c$ if $f$ is $1-1$ Sometimes, even though $f$ is not $1-1, f^{-1}(f(c))=C$.

Theorem 1. Let $f: G \rightarrow G'$ be a group homomorphism.

Assume kerf $\subseteq H \leq G$ then $f^{\prime}(f(H))=H$

Proof. 

$
\begin{aligned}
& \text { ⊆: Let } x \in f^{\prime}(f(H))=\{y \mid f(y) \in \underline{\mid f(H)} \\
& \quad \Leftrightarrow f(x) \in f(H)
\end{aligned}
$

$\Leftrightarrow \exists$ h$\in$ H s.t $f(x)=f(h)$.

$
\begin{aligned}
\Leftrightarrow f(x) f(h)^{-1} & =e \\
f\left(x h^{-1}\right) & \Rightarrow x h^{-1} \in k e r f \subseteq H . \\
& \Rightarrow \exists h^{\prime} \in H \text { set } x h^{-1}=h^{\prime} \\
& \Rightarrow x=h h^{\prime} \in H
\end{aligned}
$

Hence if $x \in f^{-1}(f(H))$ then $x \in H$. 


Theorem 2. Let $\phi: G \longrightarrow G^{\prime}$ be a group homomorphism and onto.

Consider $A:=\{H \subseteq G \mid$ ker$\phi$ $\subseteq H \leq G\}$
                 $\beta:=\left\{H^{\prime} \subseteq G^{\prime} \mid H^{\prime} \leq G^{\prime}\right\} \text {. }$

Define $\Phi: A \rightarrow \beta$
             $H \longmapsto \phi(H)$

Then $\Phi$ is 1-1, onto.

i.e, if $H^{\prime} \in B$, then $\Phi^{-1}\left(H^{\prime}\right)=\phi^{-1}\left(H^{\prime}\right)$.

proof. $\forall H \leq G, \phi(H) \leq G^{\prime}$. Hence $\Phi$ is well-defined

claim: $\Phi$ is 1-1

Let $\Phi\left(H_{1}\right)=\Phi\left(H_{2}\right) . \Leftrightarrow \phi\left(H_{1}\right)=\varnothing\left(H_{2}\right)$

by Than 1,

$
\left\{\begin{array}{l}
\phi^{-1}\left(\phi\left(H_{1}\right)\right)=H_{1} \\
\phi^{-1}\left(\phi\left(H_{2}\right)\right)=H_{2}
\end{array}\right.
$

i.e, $\mathrm{H}_{1}=\mathrm{H}_{2}$


claim: $\Phi$ is onto.

Take any $H^{\prime} \leq G^{\prime}$

 (We need to find $H \subseteq G$ s.t ker $\phi \subseteq H \subseteq G$ and 
 
 $\left.\phi(H)=H^{\prime}\right)$

choose $H_{0}=\phi^{-1}\left(H^{\prime}\right)$

Note that $\phi^{-1}\left(H^{\prime}\right) \leq G$ and ker $\left.\phi \subseteq \phi^{-1} H^{\prime}\right)$ 

r.If $x \in k \in \operatorname{ker}, \phi(x)=e_{G} \in H^{\prime}$ i. $e_{}, x \in \phi^{-1}\left(H^{\prime}\right)$,

Thus $H_{0} \in A$.

By Theorem 1, $\phi^{-1}\left(\phi\left(H_{0}\right)\right)=H_{0}$.

By surjectivity of $\phi, \phi\left(\phi^{-1}\left(H^{\prime}\right)\right)=H^{\prime}$

Thus $\Phi\left(H_{0}\right) \stackrel{\operatorname{def}}{=} \phi\left(H_{0}\right)=H^{\prime}(U)$

Thus $\Phi^{t}$ is well-defined and $\Phi^{-1}\left(H^{\prime}\right)=H_0$.

Remark. Let $\phi: G \rightarrow G$ be a group homomorphism.

$\begin{aligned}
& \widetilde{A}:=\{H \subseteq G|| \operatorname{ker} \phi \subseteq H \unlhd G\} \\
& \left.\tilde{B}:=\{ H^{\prime} \subseteq G^{\prime}\left|H^{\prime} \unlhd G\right|\right\}
\end{aligned}$

Define $\Phi: \tilde{A} \longrightarrow \tilde{\beta}$
             $H \longmapsto \phi(H)$

$\operatorname{Ker} \phi \subseteq H \unlhd G \Rightarrow \phi(H) \unlhd \phi(G) \stackrel{\phi \text { onto }}{=} G^{\prime}$

This shows $\Phi$ is well-defined.

By the Similar argument, $\Phi$ is H, onto.

i.e., $\exists$ 1-1 Correspondence between

$
\begin{aligned}
\{H \subseteq G \mid ker \phi \subseteq H \unlhd G\} & \left.\longrightarrow S^{\prime} H^{\prime} \subseteq G^{\prime} \mid H^{\prime} \unlhd G^{\prime}\right\} \\
H | & \longrightarrow \phi(H) .
\end{aligned}
$

provided $\phi: G \rightarrow$ G' subj g.p.homo.

Definition. We say a group $G$ is simple if there is no normal subgp except {e} and $G$.

Definition. $M \unlhd G$ is a maximal normal subgp $M$ of $G$.

if $M \neq G$, and $\exists N \subseteq G$ St $M \subseteq N \unlhd G$
                                                   $\Rightarrow N=G \text {. }$

Proposition. Let $M \unlhd G$. 

G/M is simple if and only if M is a maximal nomal subgp

Lemma. Let $N \unlhd G, \pi: G \longrightarrow G / N$
                    $g \longmapsto g N$

$(k e r \pi=\{g \in G \mid g N=N\}=N)$.

Then

$\Phi:\{H \subseteq G \mid \operatorname{ker} \pi \subseteq H \unlhd G\}$

$
\longrightarrow\left\{H^{\prime} \subseteq G / N \mid H^{\prime} \unlhd G / N\right\} \begin{gathered}
\text { is } H, \\
\text { onto }
\end{gathered}
$


proof. If follows from the above rmk.

{(normal) subgps of G containing N}

$\underset{\text { cowespondence }}{\stackrel{1-1}{\longrightarrow}}$ (normal) subgp of G/N\}

Proof of plop $\pi: G \rightarrow G / M$
                         $g \longmapsto g M$

Let G/M be simple 

i.e, there are only two normal subgps

$\{e\}=M$ and $G / M$ of $G / M$,

By the 1-1 correspondence

there are only two nomal subgps of $G$

Containing $M \Rightarrow M, G$.

This means $M$ is a maxmal normal subgp of $G$.

 

반응형