다음 포스팅은 https://youtu.be/3UJILZr4CNo 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다.
Abstract algebra-Normal subgp.
Given $H \leq G: g p$, ex) $\mathbb{Z}=G, H=3 \mathbb{Z}$
$G H=\{g H \mid g \in G\}$ $\Rightarrow(4 / 3 x,+)$
$\{{gh|g\in\mathbb H\}}$
= the "set" of left cosets of H in G
(but not a group, in general)
Desire: make G/H to be a group
i.e., ${ }^{\forall} \mathrm{gH}, \mathrm{g}^{\prime} H \in G / H$,
$g H \cdot g^{\prime} H:=gg^{\prime} H$.
$
\begin{aligned}
& \text { ex) } 4 \mathbb{Z} \leq \mathbb{Z}, \quad \mathbb{Z} / 4 \mathbb{Z}=\{[0],[1],[2],[3]\} . \\
& {[0]+[1]=[1]} \\
& {[1]+[2]=[3]} \\
& {[1]+[3]=[4]=[0]}
\end{aligned}$
Question. $\begin{cases}x H=x^{\prime} H . & x \neq x^{\prime} \\ y H=y^{\prime} H & y \neq y^{\prime}\end{cases}$
$
\begin{aligned}
\Rightarrow x H \cdot y H & =x^{\prime} H \cdot y^{\prime} H \\
x y H & =x^{\prime \prime} y^{\prime} H
\end{aligned}$
Proposition. Let $H \leqslant G$ Then the group operation in $G / H$ is well -defined if and only if $y x y^{-1} \in H, \forall y \in G, \forall x \in H$.
Proof. $\rightarrow$ ) Let ${x H}=H$
$\{{xh|h\in \mathbb H}\}∋ x\cdot e=x \in H$
By assumption,
$
\begin{aligned}
& \begin{aligned}
x H \cdot y H & =x y H \\
&H\cdot {yh}=yh
\end{aligned} \Rightarrow x y=y H=y-1 \\
& \Leftrightarrow y^{-l} x y \in H \\
& \text { i.e., } \forall x \in H, \forall y \in G, y^{-1} x y \in H \text {. } \\
& (\Leftrightarrow) \text { Let } x H=x^{\prime} H, \quad y H=y^{\prime} H . \Leftrightarrow x(x)^{-1} \in H, y(y)^{-1} \in H \text {. } \\
& \text { claim: } x y H=x^{\prime} y^{\prime} H . \Leftrightarrow x y\left(x^{\prime} y^{\prime}\right)^{-1} \in H \\
& \text { NTS: if } x(x)^{-1}, y(1)^{-1} \in H \text {, then }
x y\left(x^{\prime}\left(y^{\prime}\right)^{-1} \in H\right. \\
(Try it!)
Definition. We say $H ≤ G$ is a normal-subgroup
if $\forall g \in G, \forall h \in H, g h g^{-1} \in H$. Write $H \triangleleft G$.
Proposition. $H \leq G \Leftrightarrow \forall g \in G, g H g^{-1}=H \Leftrightarrow \forall{g} \in G$,
Proof. Exercise.
Proposition. let $\phi: G \rightarrow G^{\prime}$ be a gp homo.
$\operatorname{Ker} \phi \underline ◁ G$
Proof. NTS: $\forall g\in \mathbb G, \forall h\in Ker \phi, ghg^-1\in Ker\phi$
$
\begin{aligned}
\Leftrightarrow \phi\left(g h g^{-1}\right) & =\phi(g) \phi(h) \phi\left(g^{-1}\right) \\
& =\phi(g) \phi\left(g^{-1}\right) \\
& =\phi(g)(\phi(g))^{-1}=e
\end{aligned}
$
Q. Given $f: G \rightarrow H$ gp homo, kerf $f \leq G, \operatorname{Im} f \leq H$.
By previous prop, ker $f \unlhd G$
Then $\operatorname{Im}f \unlhd H$ Ans. NO, in general.
Counter-example. Let $S_{3}$ be the symmetric group of order $3$.
Take $\sigma=(12) \in S_{3}$.
$
\begin{aligned}
& \text {} \sigma:\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& \leadsto\langle\sigma\rangle=\{0,1 d\} \leq S_{3}
\end{aligned}
$
Claim: $\langle\sigma\rangle$ is not a normal supgp of $S_{3}$.
i.e. $<6>\unlhd S_{3}$.
Then
$
\begin{aligned}
= & \left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \sigma\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{-1} \\
= & \left(\begin{array}{ll}
2 & 3
\end{array}\right) \notin\left({\sigma}
\right)
\end{aligned}$
Remark. If any $\operatorname{Imf}\unlhd H$, for $H \leq G$,
Consider $\mathrm{i}: H \longrightarrow G$ I-1, gp homo
$x \longmapsto x$
Then Imi $=H$ $\underline◁ G$
i-e., any subgp $H$ of $G$ must be a normal subgp of $G$.
'기초부터 대학원 수학까지, 추상대수학' 카테고리의 다른 글
| 26. 추상대수학 (g) 제1,2,3 동형정리 (0) | 2023.08.31 |
|---|---|
| 25. 추상대수학 (f) 정규부분군간의 1-1 대응 (0) | 2023.08.30 |
| 23. 추상대수학 (d) 군작용과 케일리 정리 (0) | 2023.08.18 |
| 22. 추상대수학 (c) 잉여군과 라그랑지 정리 (0) | 2023.08.15 |
| 21. 추상대수학 (b) 순환군과 라그랑지 정리의 역방향 (0) | 2023.08.15 |