본문 바로가기
기초부터 대학원 수학까지, 추상대수학

22. 추상대수학 (c) 잉여군과 라그랑지 정리

by EnjoyingMath 2023. 8. 15.
반응형

다음 포스팅은 https://youtu.be/dsyssRBSqow 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다. 

 

Abstract algebra - coset and Lagrange's thm.

Observation Given a finite cyclic gp ( $z / n z+)$

$\begin{aligned}
& \mathbb{Z} / n \mathbb{Z}=\{[0],[1], \ldots,[n-1]\} \\
& {[K]=\{k+n m \mid m \in Z\} \stackrel{\text { denote }}{=} k+n \mathbb{Z} \text {. }} \\
& \mathbb{Z}=[0] \cup[1] \cup \cdots \cup[n-1] \text {. }
\end{aligned}$

Group Structure: $[a]+[b]=[a+b]$

From now on, write $\overline k=[k]$

$\begin{aligned}
& \cdot(n \mathbb{Z}, t) \leq(\mathbb{Z}, t) \Rightarrow \mathbb{Z} / n \mathbb{Z} \text {. } \\ 
\end{aligned}$

In general, it might be possible to generalize our observation to $(H, *) \leq(G, *) \longrightarrow G / H:$ gp

"construction" Let $H \leq G$.

Give the relation $\sim$ on $G$ by $g \sim_{L} g^{\prime}, g_{1} g^{\prime} \in G \Leftrightarrow g^{-1} g^{\prime} \in H$.

e.g)

$
\begin{aligned}
& \mathbb{Z} / \mathbb{Z}=\{\bar{0}, \overline{2}, \overline{3}\} \quad & \overline 1=\overline{5}=\overline{9}=\overline{13} \\
\Rightarrow & 1 \sim 5,5 \sim 9,9 \sim 13 \\
\Leftrightarrow & -1+5 \in \mathbb{Z}, \\
& -5+9 \in 4 \mathbb{Z} \\
& -9+13 \in 4 \mathbb{Z} .
\end{aligned}
$

Then " $\sim$ " is an equivalence relation. (Exercise).

Thus for each $g \in G$.

$
\begin{aligned}
& \bar{g}=\left\{g^{\prime} \in G \mid g \tau g^{\prime}\right\} \\
& =\left\{g^{\prime} \in G | g^{-1} g^{\prime}=h \in H\right\} \\
& \left.=g^{\prime} \in G \mid g^{\prime}=g h \text { for some h H}\right\} \\
& =\{g h / h \in H\} \stackrel{\text { denote }}{=} H: \text { the equivalence class of } g \text {. }\end{aligned}$

Thus $G=\underset{g \in G}\bigcup \cdot \bar{g}=\underset{g \in G}{\bigcup} g H$.

Definition. Given $H \leq G$,

$G / H:=\{g H \mid g \in G\}:$ set of corsets. 

Remark. Similarly, give the relation "~R" by

$
\begin{aligned}
& g \sim_{R} g^{\prime} \stackrel{\text { def }}{\Leftrightarrow} g^{\prime} g^{-1} \in H \\
& \Rightarrow \bar{g}=[g]=\left\{g^{\prime} \in G \mid g \sim_{R} g^{\prime}\right\} \\
& =\left\{g^{\prime} \in G \mid g^{\prime} g^{-1} \in H\right\}=\left\{g^{\prime} \in G \mid g^{\prime} g^{-1}=h \in H\right\} \\
& =\{h g \mid h \in H\} \stackrel{\text { denote }}{=} H g .
\end{aligned}
$

We call $Hg $  the right coset,

                $g H$ the left coset.

e.g) (1) $\{e\} \leq G$



$\begin{aligned}
G / \{e\} & =\{g \{e\} \mid g \in G\} \\
& =\{\{g\}\} \mid g \in G\} \cong g \mid g \in G\}=G .
\end{aligned}$

Thus $G/\{e\}= G$

Exercise. $G / \mathrm\{e\}\} \longrightarrow G$ is a group isomorphism
                     $\{g\}|\longrightarrow g$

(2) $n \mathbb{Z} \leq \mathbb{Z}$.

$
\mathbb{Z} / n \mathbb{z}=\{\overline{0}, \cdots, \overline{n-1}\} \text {. }$

Proposition 1. $H \leq G, g_{1}, g_{2} \in G$.

Then $g_{1} H=g_{2} H \Leftrightarrow g_{1}^{-l} g_{2} \in H$
                                   $\Leftrightarrow g_{2}^{-1} g_{1} \in H$

proof. $\left(\Rightarrow\right.$ Let $g_{1} H=g_{2} H$

So, $g.e \in g_{2} H \Rightarrow g_{1} \in g_{2} H$.
$\begin{aligned}
& \Rightarrow g_{1}=g_{2} h \text { for sone heft } \\
& \Rightarrow g_{2}^{-1} g_{1}=h \in H . \\
& \Rightarrow g_{1}^{-1} g_{2} \in H
\end{aligned}$

$\Leftrightarrow$ Let $g_{1}^{-1} g_{2} \in H$. Then $g_{1} 1 g_{2}=h^{\prime} \in H$ for some $h$!

$\begin{aligned}
& \Rightarrow g_{2}=g h^{\prime} h^{\prime} \text { for some } h^{\prime} \in t \text {. } \\
& \left.\left.\Rightarrow g_{2} H \stackrel{\text { def }}{=} g_{2} h \mid h \in H\right\}_{h ! W}=\left|g_{i} h h\right| h \in H\right\} \\
& \left\{g_{1} / h \in H\right\}=g, t \text {. }
\end{aligned}$

$\therefore g_{1} H=g_{2} H$


Proposition 2.  Let $H \subseteq G$.

Then $\forall g \in G,|g H|=|H|$

Proof. Define $f: g H \longrightarrow H$
                        $gh $$\longmapsto h$

claim: $f$ is H, onto.

1-1) If $f\left(g h_{1}\right)=f\left(g h_{2}\right)$, then $h_{1}=h_{2}$

then $g h_{1}=g h_{2}$.

Onto) Take any $h_0\in H$, $f\left(g h_{0}\right)=h_{0}$.

Lagrange's Theorem. Let $G$ be a finite gp, $H \leq G$.

Then $|H||| G \mid$ i.e., $|G|$ divides $|H|$.

Proof. Let $G=\underset {g \in G}\bigcup g H \stackrel{G: \text { finite }}{\Longrightarrow} g_{1} H \cup \cdots \cup g_{r} H$.
$\Rightarrow|G|=\sum_{k=1}^{r}\left|g_{k} H\right|={ }_{\text {prop2 } 2}^{=} \sum_{k=1}^{r}|H|=r|H| \text {. }$

i.e, $(G)=r H \mid$. Thus $|H| \mid(G)$

Corollary 1. $p$ prime number. Then $\mathbb Z/p\mathbb Z$ pry has no proper surge except $\{e\}$

Corollary 2. If $G$ is a group with $|G|=p$ : prime, then $G$ is cyclic.

Proof. Take $g \in G \backslash\{e\}$.

$
\Rightarrow\langle g\rangle \leq G \text {. }
$

Lagrange's theorem implies 

$
\begin{aligned}
\Rightarrow|\langle g\rangle||| G \mid & \Rightarrow|\langle g\rangle|=|G| \\
& \Rightarrow\langle g\rangle=G .
\end{aligned}
$

반응형