다음 포스팅은 https://youtu.be/5SQfrH83HfA 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다.
Abstract algebra - group action.
Definition. Let $G$ be a group, $X$ be a set.
We call the function : $G \times X$ $\rightarrow X$ the group action
$(g, x) \longmapsto g \cdot x \quad$ of $G$ on $X$
denoted by $G \curvearrowright X$, if
(1) $e \cdot x=x, \forall x \in X$. $e$ identify of $G$.
(2) $\left(g_{1} g_{2}\right) \cdot x=g_{1} \cdot\left(g_{2} \cdot x\right) \quad \forall g_{1}, g_{2} \in G, \forall x \in X$.
group action $\cdot$ is compatible with a group operation.
In this Case, we say $X$ is a G-set.
Say: G acts on $X$.
Examples.
(1)
$
\begin{aligned}
& G=(\mathbb{F}-\{ o \} , x) \\
& X=\left(\mathbb{F}^{n},+, \cdot\right) \text { i.e.,} x \text { is a V.S/F. }
\end{aligned}
$
$a \cdot u_{0}=a u \in \mathbb{F}^{n}, a \in \mathbb{F}-$ \{0\}, $\, u \in \mathbb{F}^{n}$.
$\begin{aligned}
& 1 \cdot u=u, \quad \mid \in G=\mathbb{F}-s \cdot b . \\
& (a b) \cdot u=a \cdot(b \cdot u) \quad \forall a, b \in \mathbb{F}-\{0\}, u \in \mathbb{F}^{n} .
\end{aligned}$
(2) (Conjugation action) $G$ any group $X=G$.
$g \cdot x \stackrel{\text { def}}{=} gx g^{-1}, \quad \forall g \in G,{ }^{k} x \in X=G$.
Then $G\curvearrowright X$
$
\begin{aligned}
&\text{(1)}\ e \cdot x=e x e^{-1}=x \cdot{ }^{\forall} x \text {. } \\
& \text { (2) }\left(g_{1} g_{2}\right) \cdot x=\left(g_{1} g_{2}\right) x\left(g_{1} g_{2}\right)-1 \\
& =g_{1}\left(g_{2} x g_{2}^{-1}\right)_{d_{1}-1}=g_{1}\left(g_{2} \cdot x\right) g_{1}^{-1} \\
& =g_{1} \cdot\left(g_{2} \cdot x\right) \forall x, g_{1}, g_{2}
\end{aligned}
$
(3) $G$ any $g_{p}, X=G$.
$g \cdot x \stackrel{\text { def}}{=:} gx$. (left multiplication)
Then $G\curvearrowright X$ by left multiplication
(4) $X=\{x\}, G$ any $g p$.
$g \cdot x=: x, \forall g \in G \text {. }$
This G-set $X$ is called a trivial G-set.
(5) $H \leq G, X=G / H:=\{x H \mid x \in G\}$ : Collection of left coset.
$\forall g \in G, \forall x H \in G / H$,
$g\cdot xH:=gxH$
(2)
$\begin{aligned}
& g_{1}\left(g_{2} \cdot x H\right) \stackrel{?}{=}\left(g_{1} g_{2}\right) \cdot(x H) \\
& g_{1} \cdot\left(g_{2} \cdot\{x h \mid h \in H\}\right) \quad g_{1} g_{2} \cdot x H \\
& g_{1} \cdot\left\{g_{2} x h \mid h \in H\right\}=\left\{g_{1} g_{2} x h \mid h \in H\right\}
\end{aligned}$
(1) $e \cdot x H=x H$,
So $G \curvearrowright G / H$ by left multiplication.
Remark.Let $G \curvearrowright X$.
For each $g \in G$, define $\sigma_{g}: X \longrightarrow X$
$x\longrightarrow g\cdot x$
i.e., $\sigma_{g}(x)=g \cdot x,{ }^{\forall} x\in X$
Claim: $\sigma_g$ is one-to-one and onto.
1-1) If
$
\begin{gathered}
\sigma_{g}\left(x_{1}\right)=\sigma_{g}\left(x_{2}\right) . \\
g \cdot x_{1}=g \cdot x_{2} \\
\Leftrightarrow g^{-1} \cdot\left(g \cdot x_{1}\right)=g^{-1} \cdot\left(g \cdot x_{2}\right) \\
e \cdot x_{1} \quad e \cdot x_{2} \\
x_{1}=x_{2} .
\end{gathered}
$
Onto) Take any $y \in X$.
Tale $x=g^{-1} \cdot y$ Then $\sigma_{g}(x)=g \cdot\left(g^{-1} \cdot y\right)=\left(g \cdot g^{-1}\right) \cdot y=e \cdot y=y$.
Thus we can define
$\rho: G \longrightarrow S_{X}=\{1-1$, onto fins from X to itself\}
$g \longmapsto$$ \sigma_g$
: group with respect to the function composition
Claim: $P$ is a group homomorphism
$\rho\left(g g^{\prime}\right) \stackrel{?}{=} \rho(g) \circ \rho\left(g^{\prime}\right)$
For each $x \in X, \sigma_{g g'}(x)=g g^{\prime} \cdot x=g \cdot(g' \cdot x)$
Upto now, given G-sec $X$ then we can define a gp homo $\rho G \rightarrow S_{x}$.
Conversely, if we have a gp homo $\tilde{\rho}: G \longrightarrow S_{x}$, we can define a group action on $X$ as follows:
$
\begin{aligned}
& \forall g \in G, \forall x \in X, \quad: x \rightarrow X \mid \text { onto} \\
& g \cdot x=\tilde{\rho}(g)(x) \in X .
\end{aligned}
$
Claim: "$\cdot$" is a group action.
$
\begin{aligned}
e \cdot x & =\widetilde{\rho}(e)(x)=i d(x)=x, \\
\left(g_{1} g_{2}\right) \cdot x & =\widetilde{\rho}\left(g_{1}\left(g_{2}\right)(x)=\left(\tilde{\rho}\left(g_{1}\right) \cdot \tilde{\rho}\left(g_{2}\right)\right)(x)\right. \\
& =g_{1} \cdot\left(g_{2} \cdot x\right)
\end{aligned}
$
Definition $X$ set,
A group homomorphism $\rho: G \rightarrow S_{x}$ is called a permutation representation of $x$
Application
(1) $G \curvearrowright G$. by left multiplication. G: any gp.
i.e., $X=G$ is a $G$-set.
By Remark above, we have $\lambda: G \longrightarrow S_{G}$
$g \longmapsto \lambda(g)$
Where $\begin{aligned} \lambda(g): G & \longrightarrow G
& h \longmapsto \lambda(g)(h)=g \cdot h=g h .\end{aligned}$
Caykey Theorem $\lambda$ is $1-1$. i.e., $G \cong \lambda(G) \leq S_{G}$.
i.e., any $g p$ is a subgp of a Symmetric gp.
proof. It suffices to show Ker$\lambda$= $\{\left.e_{G}\right\}$.
Let $\lambda(g)=i d g$. identity element of $S G$
Then $\lambda(g)(x)=g x=x \Rightarrow g=e_{G}$.
$i d(x)$
Definition $x: G$-set.
$\forall x \in X, G \cdot x:=\{g \cdot x : g \in G\}$ called the $e \in G x:=\{ g \in G \mid g \cdot x=x\} \quad G$-orbit of $x$
called the isotropy subgp for $x$.
Exercise $G x \leq G$.
Exercise $\forall x \in X$, define
$
\begin{aligned}
\varphi_{x}: G / G x \longrightarrow & \longrightarrow G \cdot x \\
g G x & \longrightarrow g \cdot x .
\end{aligned}
$
Show that $\varphi_{x}$ is 1-1, onto
'기초부터 대학원 수학까지, 추상대수학' 카테고리의 다른 글
| 25. 추상대수학 (f) 정규부분군간의 1-1 대응 (0) | 2023.08.30 |
|---|---|
| 24. 추상대수학 (e) 정규부분군의 정의 (0) | 2023.08.23 |
| 22. 추상대수학 (c) 잉여군과 라그랑지 정리 (0) | 2023.08.15 |
| 21. 추상대수학 (b) 순환군과 라그랑지 정리의 역방향 (0) | 2023.08.15 |
| 13. 대수학: 군,환,체,가군,벡터공간, 대수의 정의 (0) | 2023.08.01 |