다음 포스팅은 https://youtu.be/_oY-2n6_xEg 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다.
Recall that given a cyclic group $G$, for any subgroup $H \leq G$, $H$ is also a cyclic group.
i.e, $H=\langle y\rangle$ for some $y \in G$.
Also, we saw that $G \cong(\mathbb{Z},+)$ or $G \cong \frac{\mathbb z}{n z}$ for some $n \in \mathbb{Z}$
Now, suppose the cardinality of $G$ denoted by $|G|$ is $n < \infty$.
Then $n=|G|=|\langle x\rangle|=O(x)$ : order of $x$.
Here, $O(x)$ means the smallest natural number $n \in \mathbb{N}$ S.t $x^{n}=e$
(If there is no $n$ such that $x^{n}=e$, then $O(x)=\infty$ )
Q1. If $d \mid n=O(x),\langle x\rangle=G$.
then $\exists$ ? $H \leq G$ S.t $d=|H|=|\langle y\rangle|=O(y)$
Q2. How many generators are there in $G$ ?
$G=\langle x\rangle$ : a generator may not unique
e.g) $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$.
Proposition. (The inverse of Lagrange's theorem) Let $G=\langle x\rangle$ with $O(x)=n<\infty$.
Then ${ }^{\forall} d \mid n, \exists ! H \leq G$ s.t $d=|H|=|\langle y\rangle|=O(y)$.
Lemma. Let $x \in G, a \in \mathbb{Z}, O(x)=n . G=(x)$.
Then $o\left(x^{a}\right)=\frac{n}{\operatorname{gcd}(n, a)}$
Proof of Proposition.
Fix $d | n$.
Step 1. Existence.
Since $d|n, \frac{n}{d} \in \mathbb{Z}\left(\leadsto x^{\frac{n}{d}} \in G\right)$
Let $H:=\left\langle x^{\frac{n}{d}}\right\rangle \leq G$.
Then $|H|=\left|\left\langle x^{\frac{n}{d}}\right\rangle\right|=O\left(x^{\frac{n}{d}}\right) \stackrel{\text { Lemma. }}{=} \frac{n}{\operatorname{gct}\left(n, \frac{n}{d}\right)}=\frac{n}{\frac{n}{d}}=d$
Step 2. Uniqueness.
Let $H^{\prime} \leq G$ S.t $\left|H^{\prime}\right|=d$.
Claim: $H^{\prime}=\left\langle x^{\frac{n}{d}}\right\rangle$.
Note that $d=\left|H^{\prime}\right|=\left|\left\langle x^{m}\right\rangle\right|=O\left(x^{m}\right)=\frac{lemma}{=} \frac{n}{\operatorname{gcd}\left(n_{1} m\right)}$
i.e., $\frac{n}{d}=gcd(n,m)$
$ {n s+m t \text { for some }s,t\in\mathbb z}$
To show the claim, " $=$" $\Leftrightarrow$ ⊇ and $\subseteq$
⊇ : $x^{\frac{n}{d}}=x^{n s m t}=x^{n s} \cdot x^{m t}=(x^{n)^{s}} \cdot\left(x^{m}\right)^{t}$
$
\begin{aligned}
& =\left(x(m)^{t}\in x^{m}\right\rangle. \\
\subseteq m & =\operatorname{gcd}(n, m) \times m^{\prime}, m^{\prime} \in \mathbb{Z} \\
& =\frac{n}{d} \times m^{\prime}
\end{aligned}
$
Thus $x^{m}=x^{\frac{n}{d} \times m^{\prime}}=\left(x^{\frac{n}{d}}\right)^{m '} \in\left(x^{\frac{n}{d}}\right)$
Hence $H^{\prime}=\left\langle x^{m}\right\rangle=\left\langle x^{\frac{n}{d}}\right\rangle=H$.
Corollary 1. $p$ prime number.
$\mathbb{Z} / p \mathbb{Z}$ has no proper subgroup except $\{e\}$.
Proof. Let $\mathbb{Z} / p \mathbb{Z}=\langle g\rangle, o(g)=p$.
If $H \leq\mathbb{Z} / p \mathbb{Z},$ then $H=\left\langle g^{a}\right\rangle$ for some $a \in \mathbb{Z}$.
Then $0(g^a)=\frac{p}{gcd(p,a)}= p$ or 1
Then $a=0$ or 1 . (i.e, $g^{\circ}=e, g^{l}=g$ )
Then $H=$ {e} or $H=\mathbb{Z} / p \mathbb{Z}$.
Remark. We used for $a, b \in \mathbb{Z}, \exists s, t \in \mathbb{Z}$ s.t $\operatorname{gcd}(a, b)=a s+b t$.
e.g) $3,9 \Rightarrow \operatorname{gcd}(3,9)=3 \times(-2)+a \times(1)$
Proof of lemma.
Recall that given $a, b \in \mathbb{Z}, \exists q \in \mathbb{Z}, 0 \leq r \leq a-1$
s.t $= qa+r$. (division algorithm)
$\operatorname{step 1}\left(x^{a}\right)^{\frac{n}{\operatorname{gcd}(n, a)}}=\left(x^{n}\right)^{\frac{a}{gcd(n, a)}}=e^{\frac{a}{gcd(m a)}}=e$
step 2 we will show if $\left(x^{a}\right)^{m}=e$, then $\frac{n}{gcd(n, a)} \leq m$
Note that $x^{n}=e$, and $n=|G|=|\langle x\rangle|=O(x)$
Then by the division algorithm,
$
\begin{aligned}
& a m=n q+r, \quad 0 \leq r \leq n-1 . \\
& \Rightarrow r=a m-n q, \\
& x^{r}=x^{a m-n g}=\left(x^{a}\right)^{m} \cdot\left(x^{n}\right)^{-q} \\
& =e \cdot(e)^{-q}=e \cdot \infty \\
& \text { since } 0(x)=n \\
& \Rightarrow r=0 \\
& \text { i.e., } a_{m}=n q \Rightarrow n / a m \text {. } \\
& \text { Let } n^{\prime}=\frac{n}{gcd(n, a)}, a^{\prime}=\frac{a}{gcd}{(a, n)} \text {. } \\
& n \text { lam } \Rightarrow n^{\prime} \mid a^{\prime} m \\
& \Rightarrow n^{\prime} \mid m \Rightarrow m \geq n^{\prime}=\frac{n}{\operatorname{gcd}(n, a)}
\end{aligned}$
By step 1 and Step 2, the proof is over.
Corollary 2. (Euler-Phi function).
Define $\varphi$ :
$
\begin{aligned}
& \begin{array}{l}
\mathbb{Z} \longrightarrow \mathbb{Z} \\
n \longrightarrow \varphi(n)
\end{array} \\
& =:|s k \in \mathbb{Z}| \begin{array}{l}
k=0, \infty \infty, n-1, \\
s . t gcd, n, k)=1
\end{array} \mid
\end{aligned}$
Called the Euler-phi function.
$\varphi(n)$ is the number of generators of $\mathbb{Z} / n \mathbb{Z}$
$
\begin{aligned}
& G=\langle g\rangle, O(g)=n \text {. }
\end{aligned}
$
$O(g^k)=\frac{n}{gcd(n,k)}$=$n=$gcd(n,k)=1.
$i.e., <g^k>=<g>$
Properties of Euler-phi function (Exercise).
(1) $p$ prime, $k \in \mathbb{N}, \varphi\left(p^{k}\right)=p^{k}-p^{k-1}$.
(2) $\varphi(m n)=\varphi(m) \varphi(n)$ if $\operatorname{gcd}(m, n)=1$.
Remark. $\forall K \in \mathbb{N}_{1} \varphi(k)=\varphi\left(P_{1}^{m_{1}} P_{2}^{m_{2}} \ldots P_{r}^{m_{r}}\right)$
$\begin{aligned}
& \text { (2) } \varphi\left(p_{1}^{m_{1}}\right) \varphi\left(R_{2}^{m_{2}}\right) \cdots \varphi\left(\mathbb{R}^{m_{r}}\right) \\
& \text { (1) }\left(p_{1}^{m_{1}}-p_{1}^{m_{1}-r}\right) \cdots\left(p_{r}^{m_{r}}-p_{r}^{m_{r}-1}\right) \text {. } \\
& =p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{r}^{m_{r}} r_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)=k_{i=1}^{\frac{r}{1 !}}\left(1-\frac{1}{P_{i}}\right) .
\end{aligned}$
Summary:
(1) $H \leq\langle x\rangle \Rightarrow$ H:cyclic.
(2) $\forall d \mid n=O(x), \exists ! H \leq\langle x\rangle$ s.t. $|H|=d$.
(3) \# of generators of $\mathbb{Z} / p \mathbb{Z}=\varphi(n)$
(4) If $H \leq G$, then $|H||| G \mid$
(Lagrange Thm).
'기초부터 대학원 수학까지, 추상대수학' 카테고리의 다른 글
| 25. 추상대수학 (f) 정규부분군간의 1-1 대응 (0) | 2023.08.30 |
|---|---|
| 24. 추상대수학 (e) 정규부분군의 정의 (0) | 2023.08.23 |
| 23. 추상대수학 (d) 군작용과 케일리 정리 (0) | 2023.08.18 |
| 22. 추상대수학 (c) 잉여군과 라그랑지 정리 (0) | 2023.08.15 |
| 13. 대수학: 군,환,체,가군,벡터공간, 대수의 정의 (0) | 2023.08.01 |