다음 포스팅은 https://youtu.be/zUnJIE3XXs0 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다.
Last time, $y^{\prime}=\frac{d y}{d x}=f(x, y) \stackrel{\text { if }}{=} g(x) h(y)$ : separable
$y^{\prime}=f(x, y), y$ is a function of $x$.
$$
\begin{aligned}
\frac{d y}{d x}=f(x, y) & \stackrel{x d x}{\Longleftrightarrow} d y=f(x, y) d x \\
& \Longleftrightarrow {f(x, y)}dx-dy=0.
\end{aligned}
$$
Suggest $M(x, y) d x+N(x, y) dy=0$.
Total differential: given a function $u=u(x, y)$,
$$
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y
$$
Intuition: $u=u(x, y)$,
$$
x=x(t), y=y(t) .
$$

Example. $u=u(x, y)=x^{3}+x y^{2}$.
$$
\begin{aligned}
& \frac{\partial u}{\partial x}=3 x^{2}+y^{2}, \frac{\partial u}{\partial y}=2 x y . \\
& d u=\left(3 x^{2}+y^{2}\right) d x+2 x y d y .
\end{aligned}
$$
Definition. Given a 1st order ordinary differential equation (ODE) $M(x, y) d x+N(x, y) d y=0$,
We say it is exact if there exists a function $u=u(x, y)$ such that
$$
M(x, y) dx+N(x, y) dy(=0)=du .
$$
Remark.
$d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y$,
if exact, i.e., $M d x+N d y=0$.
$$
\Leftrightarrow\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=M, \\
\frac{\partial u}{\partial y}=N, \\
u \text { is constant. }
\end{array}\right.
$$
Natural Question. How do we know a given ODE is exact?
Suppose $M d x+N d y=0$ is exact.
Then there exists a function $u=u(x, y)$ such that $M dx+N dy =du$.
Then
$$
M=\frac{\partial u}{\partial x}, \quad N=\frac{\partial u}{\partial y} \text {. }
$$
In such a case,
$$
\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)
$$
(provided if $u$ is $C^{2}$ )
i.e., $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
Example. $u(x, y)=x^{3}+x y^{2}$.
Observe that
$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=2 y, \\
& \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=2 y . \\
& \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} .
\end{aligned}
$$
Recipe for exact ODEs
Given a 1st-order ODE,
Step 1. Determine whether or not it is separable.
Step 2. If not, determine whether or not it is exact.
i.e., given $M d x+N d y=0 \stackrel{?}{=} d u$ ?
If $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
$\Leftrightarrow \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)$ (provided } $u$ is $C^2$)
then $M dx+N dy=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0$
$u=u(x, y)=$ any constant.
Example. $\left(x^{3}+3 x y^{2}\right) d x+\left(3 x^{2} y+y^{3}\right) d y=0$.
$\left(3 x^{2} y+y^{3}\right) d y=-\left(x^{3}+3 x y^{2}\right) d x$.
$\Leftrightarrow \frac{d y}{d x}=y^{\prime}=-\frac{x^{3}+3 x y^{2}}{3 x^{2} y+y^{3}}$ : not separable
$$
\begin{aligned}
\text { Write } & M=M(x, y)=x^{3}+3 x y^{2}, \\
& N=N(x, y)=3 x^{2} y+y^{3} . \\
\frac{\partial M}{\partial y}=6 x y & =\frac{\partial N}{\partial x}
\end{aligned}
$$
This ODE is exact.
$$
\text { Write } \begin{aligned}
M & =x^{3}+3 x y^{2}=\frac{\partial u}{\partial x}, \\
& N=3 x^{2} y+y^{3}=\frac{\partial u}{\partial y} .
\end{aligned}
$$
Method 1.
Start with $\frac{\partial u}{\partial x}=x^{3}+3 x y^{2}$.
$$
u(x, y)=\int \frac{\partial u}{\partial x} d x+k(y)
$$
$$
\begin{aligned}
& =\int x^{3}+3 x y^{2} d x+k(y) \\
& =\frac{1}{4} x^{4}+\frac{3}{2} x^{2} y^{2}+k(y): T B D . \\
& \frac{\partial U}{\partial y}=3 x^{2} y+k^{\prime}(y)=N=3 x^{2} y+y^{3} . \\
& k^{\prime}(y)=y^{3}, k(y)=\frac{1}{4} y^{4}
\end{aligned}
$$
Hence
$$
u(x, y)=\frac{1}{4} x^{4}+\frac{3}{2} x^{2} y^{2}+\frac{1}{4} y^{4}=C .
$$
Method 2.
start with $\frac{\partial u}{\partial y}=N=3 x^{2} y+y^{3}$.
$$
u=u(x, y)=\int \frac{\partial u}{\partial y} d y+l(x)
$$
$$
\begin{aligned}
& =\int 3 x^{2} y+y^{3} d y+l(x) \\
& =\frac{3}{2} x^{2} y^{2}+\frac{1}{4} y^{4}+l(x): T B D . \\
& \frac{\partial U}{\partial x}=3 x y^{2}+l^{\prime}(x)=M=x^{3}+3 x y^{2} \\
& \Leftrightarrow l^{\prime}(x)=x^{3} . \\
& l(x)=\frac{1}{4} x^{4} .
\end{aligned}
$$
Hence $u(x, y)=\frac{3}{2} x^{2} y^{2}+\frac{1}{4} y^{4}+\frac{1}{4} x^{4}=$ Constant.
'다 까먹었지만 수학은 하고싶어, 미분방정식' 카테고리의 다른 글
| 미분방정식 6강. Integrating factor를 만드는 방법과 레시피 (0) | 2023.08.02 |
|---|---|
| 미분방정식 5강. 완전 미분방정식으로 일반적인 1차 미분방정식 풀기 (0) | 2023.07.29 |
| 미분방정식 3강. 전미분과 Chain rule, 완전 미분방정식 (0) | 2023.07.28 |
| 미분방정식 2강. 변수분리형 미방과 미적분학, 수학적 모델링 (0) | 2023.07.26 |
| 미분방정식 1강. 변수분리형 미분방정식 (0) | 2023.07.26 |