본문 바로가기
기초부터 대학원 수학까지, 선형대수학

18. 선형대수학에서 추상대수학으로 (a) 선형결합의 추상화

by EnjoyingMath 2023. 8. 9.
반응형

다음 포스팅은 https://youtu.be/zg63xXZYNM8 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다. 


Recall that given a vector space$V/\mathbb F$, 

 

also given $W\subseteq V,span(W):=\{a_1,\omega_1+...+a_1\omega_n|\omega_i\in W, a_i\in\mathbb F, 1\leq i\leq n, n\in\mathbb N\}$.

Observe that Span $(W)$ is a vector space over $\mathbb{F}$.

$$
\begin{aligned}
& x=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}, \\
& y=b_{1} \widetilde{\omega}_{1}+\cdots+b_{m} \widetilde{\omega_{m}} \\
& x+y=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}+b_{1} \widetilde{\omega_{1}}+\cdots+b_{m} \widetilde{\omega_{m}} \in \operatorname{Span}(W) \\
& \forall C \in \mathbb{F}_{1} \quad c x=c a_{1} \omega_{1}+\cdots+c a_{n} \omega_{n} \in \operatorname{Span}(W)
\end{aligned}
$$

Also, $W \subseteq \operatorname{Span}(W) \subseteq V$.

If $H$ is a vector space in $V$ Containing $W$, then Span W $\subseteq H$.

Thus, Span ( $W$ ) is the smallest subspace of $V$ Containing $W$.

Proposition. Given a $V.S $  $V/F$, $W \subseteq V$.

$\operatorname{Span}(W)=\cap H$, here the intersection is taken from all possible subspace $H$ of $V$ containing $W$.

Proof. $\subseteq:$ Take any $u \in \operatorname{Span}(\omega)$.

Take any subspace $H$ in $V$ containing $W$.

$
\text { i.e., } W \subseteq H \leq V
$

Write $u=a_{1} u_{1}+$ ...$+$ $a_{n} u_{n}, u_{i} \in W, a_{i} \in F_{1} 1 \leq i \leq n$. since $H \geq W$ and $H$ is $V.S/\mathbb F$ itself, $; \Rightarrow U_{i} \in H$.

 

thus $a_{1} u_{1}+...+a_{n} u_{n} \in H$

⊇ : It is enough to show span (W) is, in fact, one of such $H$.

$
\text { i.e, } W \subseteq S \operatorname{spa}(W) \leq V.
$

Remark. $V:U.S/\mathbb F$ $\rightarrow$ basis $\beta$ of $V$

$\beta$ is the maximal linearly independent set.

Moreover, $\operatorname{span}(\beta)=V$.

즉, $\beta$를 포함하고 $V.S$  구조가 되는 가장 작은 집합이 $V$ 이다.

Definition. Given $(G, *)$ a group, $H \subseteq G$.

We say $H$ is a subgroup of $G$.

if $(H, *)$ is a group, denote $H \leq G$.

Remark. (1) let $H \leq(G, *) .\left[\begin{array}{l}(G, *) \rightarrow \exists ! e_{G} . \\ (H, *) \sim \exists ! e_{H} .\end{array}\right.$

By the uniqueness of identity, $e_{H}=e_{G}$.

(2) Let $H \subseteq G$

Then $H \leq G$ if and only if the followings hold:

(a) $\forall a, b \in H, a * b \in H$

(b) For any $c\in H$, $\quad C^{-1} \in H$.

$
\begin{aligned}
& \text { e.g) }((Q, +) \leq(\mathbb{R}, +) \\
& (\mathbb{Q}-\{0\}, X) \leq(\mathbb{R}-\{0\}, X)
\end{aligned}
$

Definition. Given a group $(G, *), S \subseteq G$.

$
\text { define } \operatorname{span}(S)(=\langle S\rangle)=: \cap H
$

: the subgroup generated by $S$.

Exercise. $Span (S)$ is the smallest subgroup of $G$ containing $S$.

Exercise. Given a group $(G, *), \forall_{i} \in I, H_{a} \leq G$.

Show that $\bigcap_{i \in I} H_{i} \leq G$

Examples. (1) Let $(G, +)$ be an abelian group

pick $x \in G(\sim\{x\} \subseteq G)$

$
\operatorname{span}(\{x\})=\{n x \mid n \in \mathbb{Z}\} \operatorname{n} x \mid n \in \mathbb{Z}\} \leq G \{nx \mid n \in \mathbb{Z}\}
$

is the smallest, i.e, $\forall H \leq G$ s.t $\{x\} \subseteq H$,

$\{n x \mid n \in \mathbb{Z}\} \subseteq H \text {. }$

(2) Let $(G, +)$ be an abelian group.

pick $x, y \in G$

$\operatorname{span}(\{x, y\}) \stackrel{\text { execise }}{=}\{n x+m y \mid n, m \in \mathbb{Z}\}$.

반응형