다음 포스팅은 https://youtu.be/4Q1cm3VQPUE 의 영상에서 작성한 노트의 핵심을 정리한 것입니다. 여러 오탈자 및 수정 사항들이 있을 수 있습니다. 노트 내용에 대한 디테일한 설명들은 영상을 참고하시길 바랍니다.
Given a sequence $\{s_n \} \subseteq \mathbb{R}$,
define
$$
\begin{aligned}
& a_{1}:=\sup _{k \geq 1} s_{k}=\sup \left\{s_{k} \mid k \geq 1\right\} \\
& a_{2}:=\sup _{k \geq 2} s_{k}=\sup \left\{s_{k} \mid k \geq 2\right\} \\
& \vdots \\
& a_{n}:=\sup _{k \geq n} s_{k}=\sup \left\{s_{k} \mid k \geq n\right\}
\end{aligned}
$$
Then $\{a_{n}\} \subseteq \mathbb{R} \cup\{\infty\}$
and $a_{1} \geq a_{2} \geq a_{3} \geq \ldots \geq a_{m}$ for any $m \in \mathbb{N}$
i.e., $\{a_{m}\}$ is monotone decreasing
Similarly, define
$b_{1}=\inf_{k \geq 1} \left\{ s_{k}=\inf {s_k\mid k \geq 1} \right\}$,
$b_{2}=\inf_{k \geq 2} \left\{ s_{k}=\inf {s_k\mid k \geq 2} \right\}$,
$\vdots$,
$b_{n}=\inf_{k \geq n} \left\{ s_{k}=\inf {s_k\mid k \geq n} \right\}$.
Then $\left\{b_{n}\right\} \subseteq \mathbb{R} \cup\{-\infty\}$,
and $b_{1} \leq b_{2} \leq b_{3} \leq \ldots \leq b_{m}$, i.e., $\left\{b_{m}\right\}$ is monotone increasing
for each $m \in \mathbb{N}, a_{m} \geq b_{m}$ .
$$
\text { So far, }\left(\begin{array}{l}
a_{1} \geq \ldots \geq a_{m} \geq b_{m} \\
b_{1} \leq \cdots \leq b_{n} \leq a_{n}
\end{array}\right.
$$
By Monotone Convergence Theorem,
$$
\begin{aligned}
\exists & \inf _{n \rightarrow \infty} a_{n} \stackrel{a_{n} \downarrow}{=} \inf _{n \in \mathbb{N}} a_{n}=\operatorname{iin}_{n \in \mathbb{N}} \sup _{k \geq n} S_{k} \\
\text { and } & \exists \lim _{n \rightarrow \infty} b_{n}=\sup _{n \in \mathbb{N}} b_{n}=\sup _{n \in \mathbb{N}} \operatorname{inf}_{k} S_{k} S_{k}
\end{aligned}
$$
Definition. Given a sequence $\{{s_n}\} \subseteq \mathbb{R}$,
$$
\begin{aligned}
& \text { limsup } S_{n}\left(=\lim _{n}\right):=\operatorname{inf}_{n \in \mathbb{N}} \sup _{k n} S_{k} \\
& \text { liminf } S_{n}\left(=\lim S_{n}\right):=\sup _{n \in \mathbb{N}} \inf _{k \geq n} s_{k}
\end{aligned}
$$
Remark. Although is $\{s_n\} $ is not convergent, still limsup, liminf of $(s_n)$ exist in $\mathbb{R} \cup\{ \pm \infty\}$
Remark. If $\{s_n\}$ is bounded (i.e, $\exists M>0$ s-t $\forall n\in N$, $\left.\left|s_{n}\right| \leq M\right)$
Thus $\forall n \in \mathbb{N},-M \leq S_{n} \leq M$ for some fixed $M$ i.e, $-\mu \leq a_{n} \leq M,-\mu \leq b_{n} \leq M . \forall n$
$\Rightarrow-M \leq \limsup a_n$, $liminf b_{n} \leq M$.
In particular, $\limsup s_n$, $\liminf s_{n} \in \mathbb{R}$ (Bolzano-Weierstrass property)
: for any bounded sequence in $\mathbb{R}$, there exists a convergent subsequence).
Remark. $\liminf s_n \leq \limsup s_n$
$\forall n \in \mathbb{N}, b_{n} \leq a_{n}, b_{n}=\inf _{k \geq n} S_{k}, a_{n}=\sup _{k \geq n} S_{k}$
$\Rightarrow \quad b_{n} \leq b_{n+1} \leq \cdots \leq b_{n+m} \leq a_{n+m} \leq \cdots \leq a_{m}$
$\Rightarrow \forall n, m \in \mathbb{N}, b_{n} \leq a_{m} . \Leftrightarrow$ $\{b_n\} $: bdd above)
$\stackrel{M C T}{\Rightarrow} \exists \lim _{n \rightarrow \infty} b_{n} \leq a_{m},{ }^{*} m . C \Leftrightarrow$ $\{a_n\} $: bdd below)
$\stackrel{M C T}{\Rightarrow} \quad \operatorname{limb}_{n \rightarrow \infty} \leq \lim a_{m} \Leftrightarrow \liminf s_{n} \leq \limsup s_{n}$
Proposition. Given a seguence $\{s_n\}$ in $\mathbb{R}$,
Suppose $limsup s_n \in \mathbb{R}$
Then $\lim \sup s_{n}=\beta$
if and only if (1) and (2) hold:
$\forall \varepsilon>0, \mathbb{1}, \exists n_{0} \in \mathbb{N}$ st $\forall n \geq n_{0}, \quad s_{n}<\beta+\varepsilon$
(2) $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}$ st $k \geq n, S_{k}>\beta-\varepsilon$

"infinitely many elements exist"
"all but finitely many"
elements of $S_{n}$ Should be less than $\beta+\varepsilon$
Proof. ($\Rightarrow$) Let $\limsup s_n=\beta$.
$$
\inf _{n \in \mathbb{N}} \sup _{k \geq n} s_{k}
$$
Let $\varepsilon>0$ be fixed.
Observe that $\beta+\varepsilon$ is not a lower bound of $\sup_{k\geq n} s_k$.

Thus $\exists n_{0} \in \mathbb{N}$ st $\sup _{k \geq n_{0}} S_{k}<\beta+\varepsilon$ : (1).
This implies, $\forall k \geq n_{0}, s_{k}<\beta+\varepsilon$
Note that $\quad \beta-\varepsilon<\beta=\inf_{n \in \mathbb{N}} \sup _{k \geq n} s_{k}$
$$
\leq \sup _{k \geq n} s_{k} \quad \forall n \in \mathbb{N}
$$
i.e, $\beta-\varepsilon<\sup _{k \geq n} s_{k}, \forall n \in \mathbb{N}$
Thus $\forall n \in \mathbb{N}, \beta-\varepsilon$ is not an upper bound of $\left\{s_{k} \mid k \geq n\right\}$
$\Rightarrow \exists k \in \mathbb{N}$ S.t $k \geq N$ and $\beta-\varepsilon< s_{K}$ : (2)
($\Leftarrow$) Exercise.
$
\begin{array}{r}
\text { NTS: } \forall \varepsilon>0, \exists N \in \mathbb{N} \text { s.t } \forall n \geq N, \\
\qquad \begin{array}{l}
\sup _{k \geq n} \mid s_n -\beta \mid<\varepsilon
\end{array}
\end{array}
$
Corollary. Let $\{s_n\}\ \subseteq \mathbb{R}$
Then $\limsup s_{n}=\operatorname{limin} s_{n}=\beta$
if and only if $\Rightarrow \lim _{n \rightarrow \infty} s_{n}=\beta$
Proof. ($\Rightarrow$) Note that

Then by sandwich thm, $\exists \lim _{u \rightarrow \infty} s_{n}=\beta$.
($\Leftarrow$) Exercise.
Exercise. Let $\{a_n\} $ , $\{b_n\} $ be bdd segs in $\mathbb{R}$, show that
$\liminf a_n + \liminf b_n \leq \liminf (a_n+b_n) \leq \liminf a_n + \limsup b_n \leq \limsup(a_n+b_n) \leq \limsup a_n + \limsup b_n$.
'기초부터 대학원 수학까지, 해석학개론' 카테고리의 다른 글
| 11. 해석학개론 (f) Monotone Convergence theorem과 Nested Interval Property (0) | 2023.07.30 |
|---|---|
| 7. 해석학개론 (d) 극한정리 (0) | 2023.07.25 |
| 6. 해석학개론 (c) 수열의 수렴성 (0) | 2023.07.25 |
| 5. 해석학개론 (b) 유리수의 조밀성과 실수, 자연수 공리 (0) | 2023.07.25 |
| 4. 해석학개론 (a) 완비성 공리 (the least upper bound property) (0) | 2023.07.24 |