Hilbert basis Theorem. If a Comm. ring $R$ is Necterim. then so is $R[x]$.
In partialar, $k\left[x_{1}, \cdots, x_{n}\right]$ is Nötherian. Consequentity, for each $\sin k\left[x_{1}, \cdots, x_{n}\right]$,
$(S)=\left(f_{1}, \cdots, f_{r}\right)$ for some $f_{1}, \cdots$, fr $\in S$.
Ex $k$ field $\Rightarrow k:$ Noettlerian.
Lemma R Comm. ing. TFAE:
(1) Every ideal in $R$ Can be generated by finitely many elements.
(2) R satisfies the ascending chain Conviction: for any infinite ascending chain of ickals
$I_{1} \subset I_{2} C I_{3} C \cdots$ is stationary, ie.,
$\exists m S \cdot t I_{m}=I_{m+1}=I_{m+2}=\ldots$
(3) Every nonempty set of ideals in $R$ has a maximal element. Lemma
(1) If $S_{1} \subseteq S_{2} \subseteq K\left[x_{1}, \cdots, x_{n}\right]$ then
$$
z\left(S_{2}\right) C Z\left(S_{1}\right) \subset \mathbb{A}^{n}
$$
(2) If $\left\{\right.$ sits is a family of subsets of $K\left[x_{1}, \cdots, x_{n}\right]$, then $\bigcap_{i} z\left(S_{i}\right)=Z\left(\bigcup_{i} S_{i}\right) \subset A^{n}$.
(3) If $S_{1}, S_{2} \subseteq k\left[x_{1}, \cdots, x_{n}\right]$ then
$$
z\left(S_{1}\right) \cup z\left(S_{2}\right)=Z\left(S_{1} \cdot S_{2}\right) \subseteq \mathbb{A}^{n}
$$
Intuition
$$
\begin{aligned}
& s_{1}=\{f\}, s_{2}=\{g\}, \\
& z(f) \cup Z(g)=Z(f \cdot g)
\end{aligned}
$$
Cor (Def) The zariski top on $\mathbb{A}^{n}$ is defined to be the topology whose closed sets are the alg. sets. Rm $\Lambda_{i} z\left(S_{i}\right)=z\left(\underline{\varphi} S_{0}\right)=z\left(\sum_{i} S_{i}\right)$.
Rut The zariski top is NOT Hausdorff. (unless $k$ is a finite field)
Let U,V open in $\mathbb{A}^{n}$ w.r.t Zarifititop. If $U \cap \cup=\varnothing$,
$\Leftrightarrow U^{c} U V^{c}=\mathbb{A}^{n}$
$\Leftrightarrow z\left(\left(S_{1}\right)\right) \cup z\left(\left(S_{2}\right)\right)$
$\Leftrightarrow z\left(\left(S_{1}\right)\left(S_{2}\right)\right)=A^{n}$
we ban $Z(0)=\mathbb{A}^{n} \cdot \ell$
Exercise show that the nonempty proper zarists closed subsets of $A^{\prime}$ are exactly the set of finite points.
(ie, the Zarisci top = Colin. fop in $A^{\prime}$ ). Proof of Hilbert Basis thu
Supp not.
ie, ヨ ideal ICR [x] which is not finitely generated. we can find a seq $\left\{f_{0}, f_{1}, f_{2}, \infty o 0\right\}$ such that for each for has minimal deg in $I \backslash\left(f_{0}, \cdots, f_{i-1}\right)$
For each 320 , white
$$
f_{j}=a_{j, m_{j}} x^{m_{j}}+\text { No }+a_{j, 1} x^{1}+a_{j, 0}, a_{j, k} \in R \text {. }
$$
It follow that $m_{j}=\operatorname{deg} f_{j} \leq m_{j+1}=\operatorname{deg} f_{j+1}$ Consider the ideal in $R$ generated by $\left(Q_{s,} m_{j}\right)_{j=0}^{\infty}$.
$a_{j,} m_{j}$ is the leading coefficient of $f \rho$.
Since $R$ is Nötherion, $\left(a_{j}, m_{s}\right)_{i=0}^{\infty}$ is finitely generated, so it must be covered by $a_{0,} m_{0}, \infty \infty, a_{0, m e}$ for some $l \in \mathbb{N}$. because $f_{l+1} \in I \backslash\left(f_{0}, \cdots, f_{l}\right)_{0}$
$$
\begin{aligned}
& \Rightarrow a_{l+1, m_{k+1}}=b_{0} \cdot a_{0, m_{0}}+\cdots+b_{l} \cdot a_{l, m_{l}}, t_{0}, \cdots, b_{l} \in R . \\
& \Rightarrow a_{k+1, m_{k+1}} x^{m_{k+1}}
\end{aligned}
$$
$=\left(b_{0} \cdot a_{0, m_{0}}\right) x^{m_{t+1}}+\cdots+\left(b_{l} \cdot a_{l, m_{l}}\right) x^{m_{k+1}}$
$=b_{0} \cdot f_{0} \cdot x^{m_{k+1}-m_{0}}+\cdots+b_{l} \cdot f_{e} \cdot x^{m_{k+1}-m_{e}}$
\begin{itemize}
\item laver order terms.
\end{itemize}
let $f$
$=f_{e+1}-\left(x_{0} \cdot f_{0} \cdot x^{m_{t+1}-m_{0}}+\cdots+b_{e} \cdot f_{e} \cdot x^{m_{t+1}-m_{e}}\right)$
since fut $\in I \backslash\left(f_{0}, \cdots, f_{l}\right)$, so does $f$.
By Construction, the deg of $f$ in I $\mid\left(f_{0}, \cdots, f_{x}\right)$
is $M_{\ell+1}-1<M_{\ell+1}$,
which contradicts the choice of fe.
'대수기하학' 카테고리의 다른 글
| [대수기하] 1. 대수적 집합 (algebraic set) (2) | 2023.07.01 |
|---|